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Abstract

Physics is not just about mathematics. Mathematical entities in physics translate an

actual experience. Measurements bridge this gap. A definition of measurements in six

common sense postulates offers an interesting and possibly new insight into the structure

of quantum mechanics, general relativity, and on techniques such as renormalization.
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1 Introduction

For a very long time, we have used mathematics to represent the laws of physics. For instance,
we write Newton’s second law as F' =m a , where F and @ are “vectors”, abstract mathematical
entities made up of 3 real numbers, which are themselves abstract mathematical entities. The
mathematics being used has only grown more sophisticated with time, to the point where, in
recent days, progress in mathematics and progress in physics are often simultaneous. This use of
mathematics, and the success we had with it, is so essential to any kind of modern physics that
we practically never question it.

The present article studies how and why mathematics can actually be used to represent the
physical world. The fundamental premise is so simple that it is generally overlooked entirely: the
mathematical entities we manipulate are symbolic representations for the result of measure-
ments. For example, F represents a physical force, something that we can measure for instance
with a dynamometer; m represents a mass, that we can measure with weights; @ is an accelera-
tion, that we can derive from speed or position measurements; and so on.

However, a question follows from the fundamental premise: does it matter, how we measure
F , mor @? The laws of physics are never written with a specification of how you must measure
a given physical entity. Therefore, the classical answer appears to be that it does not matter.

The main thesis presented here is, on the contrary, that the physical measurement being
chosen does matter. Furthermore, we will attempt to demonstrate that many of the properties
that we take for granted, or that we use as axioms for physics laws, are indeed a consequence of
the choices we make with respect to the physical processes we accept to call “measurements”.

In the process, we will establish a number of essential properties of both general relativity
and quantum mechanics, which become two approximations of the theory presented here. It is
important to note that this result is not obtained by suggesting some new and improved
Lagrangian or action that models both, but by revisiting a much deeper foundation of physics
theories, namely the very meaning given to variables like = in the equations.

Overview In the first section of this article, we will propose a definition of measurements (sec-
tion 2.1), introduce a notation allowing us to reason about this and other physics problem
without constraining the mathematics (section 2.2), and illustrate how the formalism can be
used to discuss simple problems (section 2.3).

The next section will focus on general relativity, beginning with a definition of space and
time based on measurements (section 3.1). We will explain special relativity as a transcription of
observed relations between multiple measurements of distance (section 3.2). We will argue that
the use of curved space-time representations in general relativity is justified because we do not
know how to build an Euclidean geometry out of physical measurements (section 3.3). We will
distinguish among the equations of general relativity those that originate in mathematics or
geometry, and those that derive from physical observations (section 3.4). Finally, we will show
that the relatively recent idea of scale relativity may be justified when we change measurements
to “zoom in” or “zoom out” (section 3.5).
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The last section will focus on quantum mechanics. We will first demonstrate that quantum
mechanics axioms can be derived from the existence of measurements that can only be predicted
with probabilities (section 4.1). We will illustrate the precise mathematical parallel with the tra-
ditional formalism, justify the emergence of a complex-valued wave-function describing the prob-
ability of presence, and suggest a discrete (as opposed to continuous) normalization condition for
the wave-function (section 4.2). This will lead us to a new interpretation of quantum mechanics
devoid of the so-called “quantum measurement problem” (section 4.3).

2 Defining Measurements

While we live in the universe, we have no direct perception of it. Instead, we rely on measure-
ments to gather information about the universe, whether performed by biological physical pro-
cesses in our body or by physical devices we invented. All physical laws hinge on measurements,
which suggests that a precise definition can give us new insights on the meaning and validity of
these physical laws.

2.1 Measurement Postulates
This article postulates that a measurement is:
1. a valid physical process,
impacting two fragments! of the universe chosen in advance,
in a repeatable way,

gathering information about an unknown (or input) fragment
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represented by a change in a display (or output) fragment
6. which can be given a numerical or symbolic interpretation.
It may be useful to justify each of these propositions.

1. A measurement is done from within the universe, and it obeys the laws of the universe. It
must therefore be a valid physical process. This proposition states that a voltmeter does
not operate through magic, but through the normal laws of physics.

2. In order for a measurement to be useful, it needs to correlate fragments of the universe
that are known to the measurement observer. A voltmeter must measure its inputs, not a
voltage picked up at random in the universe, and it must show the result in a known way
on a previously identified display.

3. A measurement needs to be repeatable, giving consistent results for consistent inputs. A
voltmeter that, given the same input, displays random values is considered unreliable,
and it should not be used for actual measurements.

4. A measurement needs to gather information about the unknown fragment. When you roll
a dice, this is a valid physical process, and it presumably correlates the final value shown
by the dice with the initial position and speed of your hand. However, it does not present
useful information about the state of your hand, and therefore is not considered a mea-
surement.

5. Since we live in the universe, the result of the measurement manifests as a change in
the “display” universe fragment. If your voltmeter display does not move in response to
voltage, or moves noticeably in response to some other influence, the voltmeter is broken
and cannot be used to perform actual measurements.

6. In order for the measurement to give quantitative and not just qualitative results,
the “display” fragment of the universe is associated with a graduation, which allows us to
map the changes to a symbolic or numeric value. Only this graduation and associated
calibration allow us to know that a particular voltmeter state corresponds to a particular
voltage on the inputs.

1. The term fragment is used here to indicate that we do not assume any specific partitioning of the universe
along any particular variable. Except for this distinction, it is otherwise essentially used in the same sense as
system or region of space-time have been used in many physics texts.
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These statements are a possible definition of what we want to accept as measurements, and not
a statement about how the universe works. We can however make a statement about the uni-
verse: experimentally, there are physical processes with these properties. In particular, repeata-
bility relies on the observed existence of symmetries, such as invariance by rotation or transla-
tion through space and time, allowing multiple identical physical processes in the universe.

2.2 Formal transcription

It is possible to transpose the statements made earlier into a formal notation that facilitates a
precise description of complex statements about the universe.

Possible Let us denote § the fragment of the universe 4l on which a measurement M is being
performed (the measurement apparatus input), @ the display fragment where the result shows
up (the measurement apparatus output), and P an arbitrary physical process that is not neces-
sarily a measurement.

We can define the notation P § as the application of process P to universe fragment §. In
reality, P may apply to the universe as a whole, but the notation P § tells us that:

e the physical process P is compatible with the state of the universe fragment J.

e we are interested in the effects of the process P with respect to the fragment §. This does
not necessarily mean that the effect of P is restricted to §, as discussed below.

The first point shows that the notation can be used as a predicate, telling the reader that a
physical process is valid for the universe fragment under consideration. The second point indi-
cates that the notation can also be used as an operator notation, allowing use to denote the
changes in the universe that are a consequence of the application of the physical process P.

The notation M § expresses the first measurement postulate, since it reads as “M is a phys-
ical process that applies to §.

Correlating We can define the notation §; = §2 to indicate that what we know about the uni-
verse fragment §; is consistent with what we know about the universe fragment §2 and con-
versely. A notation using an equal sign is reasonable, because the relation is reflexive, symmetric
and transitive like the traditional mathematical equality.

e Reflexivity is necessary for logical consistency of our knowledge of the world, as what we
know about a system must not be self-contradictory.

e Since the relation denotes consistency between what we know about two fragments of the
universe, it is symmetric by construction.

e Transitivity is also required for a logically consistent system of knowledge applied to any
three fragments §1, §2 and §3. If what is known about §; is compatible with what is
known about both Fo and F3, then there can be no incompatibility between what is
known about §2 and §s, as any such known incompatibility would imply an incompati-
bility with §1

However, the relation §1; =§2 does not necessarily map a single state of the universe fragment §;
to a single state of the universe fragment Fo. It is for example possible for this equation to hold
when we know nothing about either §; or F2. Any such equality relationship also requires var-
ious physical hypotheses to be valid, and implicitly carries these hypotheses with it. It would be
very tedious to make this explicit in the notation, but one should always be thinking that,
strictly speaking, §1 = §2 stands for §1 =g F2, where H is an index representing the set of phys-
ical hypotheses under which the equality is being considered. One particularly notable hypoth-
esis is the approximation consisting in ignoring irrelevant aspects of the system.

Based on the definition of equality above, we can then write eq. (1) to indicate that a mea-
surement M is a valid physical process collecting information from a universe fragment § and
showing that information in the “display” fragment ©:

M3F=MD (1)
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It may be helpful to suggest that eq. (1) should read as: The information we have? about the
display fragment ® after applying measurement M is consistent with the information we have
about the unknown fragment § after applying the same measurement M.

In particular, eq. (1) does not specify anything about the rest of the universe, and specifi-
cally nothing about § and D “before” the measurement. Note that both sides of eq. (1) contain
M because we are interested in the effect on the fragments § and © of the same physical process
M. An equation like ® = M § would indicate that applying the process M to a fragment §
transforms it into ®, which is not what happens in a measurement. By contrast, what eq. (1)
tells us is only that we can choose § and © “before” performing the measurement, which is the
second measurement postulate.

Repeatable The measurement process needs to be repeatable. After applying the measure-
ment once, applying it a second time should result in the same observation. Without invoking
any notion of “time”, we can write eq. (2), which holds for measurements but not for arbitrary
physical processes:

MMF=MF (2)

Based on the definitions given earlier, eq. (2) reads as “what we learn about the system § by
applying the measurement M is compatible with what we learn about §F by applying M to the
fragment of the universe that resulted from the measurement process”, a more precise definition
of the third measurement postulate.

Focused The measurement process correlates two selected fragments of the universe § and D,
but it really collects information only about §, something which is not apparent in eq. (1): it
does not depend on the rest of the universe. This is described by eq. (3):

MF=Myu (3)

At first glance, eq. (3) might appear “dimensionally challenged” if one does not remember that,
as above, it relates what we know about § and what we know about 4. A possible reading of
that equation would be: “all that we learned about the universe 34 by applying measurement M is
what we learned about the unknown fragment § by applying measurement M”. The measurement
process M can give information only about §, which is the fourth measurement postulate.

As indicated earlier, other physical processes may have this property. Such processes will be
said to be focused on §.

Observable The measurement process correlates an input and an output as shown in eq. (1),
but the relation appears symmetric. In reality, we only observe the output of the measurement
apparatus. Let us define the notation |D| to indicate the objective interpretation of the changes
in the display fragment ®, in other words an interpretation of the changes that does not depend
on the observer making it, nor even requires an observer. We can read the notation |D| as “the
output fragment © s directly observable® with measure |D|”. This notation expresses our fifth
measurement postulate.

It is very possible that for some experiments, we can only observe the measurement output
directly, but not the measurement input. In that case, the notation |D| is acceptable but the
notation |§| is not valid.

Quantifiable For M to be a measurement, it must also be possible to give a numerical or sym-
bolic interpretation m to the changes that are caused by the physical process M to the display
D. We can use a “graduation equation” like eq. (4) to show how a particular state of the display
fragment ® is interpreted numerically.

IMD|=m (4)

2. We must particularly emphasize the phrase “the information we have” in the definition of the “equality”
found in eq. (1). This equality is not intended to indicate perfect identity between two physical systems, some-
thing which, in the current state of our knowledge, may not make sense. On the contrary, such an equation
implicitly takes into consideration all the imperfections and limitations of our measurement systems and theory.
This approach is not unreasonable, and can be related to the way physicists today routinely write perfect equali-
ties like ' =ma with a clear understanding of the various approximations behind this notation.

3. The word observable is used here in the original English sense, not in the derived quantum-mechanical
acceptation of the term. Furthermore, the word observable, contrary to observed, does not imply an actual
observer, but only that an objective interpretation of the change in ® is possible.
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Per the definitions above, |M ®| denotes the directly observable change in the display fragment
that results from the measurement process. We can read eq. (4) as “the changes in the display
fragment that occur during measurement are associated to the symbolic measure m”, a transcrip-
tion of the sixth measurement postulate.

Graduations are somewhat arbitrary. They integrate the frequently used notion of measure-
ment unit. A graduation like eq. (4) relates the possible states of © to the possible values of m.
We do not specify the mathematical formulation of m, and specifically, m does not need to be a
real number, or even a number at all. For example, eq. (4) could relate an unknown or partially
known state of D to a probability distribution m. However, in eq. (4) unlike in earlier equations,
the equal sign is used in the more traditional meaning of equality between mathematical entities
such as real numbers or vectors.

2.3 Formal reasoning

If we stay within physically reasonable limits, we can use the equations above to do some rea-
soning about the results of a measurement. In this section, we will give a few examples, not with
the intent to be exhaustive, but for illustration purpose.

Repeatable Process In many cases, a same process P can be repeated a large number of
times. If we apply the process P a total of k times to a universe fragment §, we can write
PPP...P§ as P*§F. In that case, P*§ it is to be understood as being valid only for physically
acceptable values of P, k and §. Such a process P is said to be repeatable.

A particular application of this notation is when the physical process can somehow be
reversed as far as the system being studied is concerned. For example, when observing the
layout of a room, the physical process reversing “adding a chair to the room” is the pro-
cess “removing the chair that was added”. Such a process is said to be reversible. Note that
whenever an inverse is used, the approximations required for this inversion implicitly become
part of the set of hypotheses H used in the definition of the equality. For example, the
inverse ‘removing the chair that was added” requires that one ignores aspects that are not
known to be identical, such as the position of the molecules of air in the room.

If such a process exists for process A, we can denote A~! the inverse process, which obeys
eq. (5) for all physically acceptable value of A, k and §. In particular, depending on the phys-
ical process being considered, this may include the cases k=0 or k£ <O0.

AflAkngkflg (5)

At a macroscopic scale, most measurement processes appear to have, at least approximately, an
inverse with respect to the system being measured and the measurement process. For example,
the inverse of “connecting a voltmeter” is “disconnecting a voltmeter”; the inverse of “placing a
rod alongside an object” is “putting the rod back in the original place”. This is not a general
rule: destructive measurements do not have an obvious inverse, since the object being measured
cannot easily be reconstructed.

Identical Processes In many cases, we will have to write equations that are valid for all phys-
ically acceptable systems, such as eq. (5). A shortcut notation in that case is to consider this an
identity of the physical processes themselves, as in eq. (6):

A-1 AR = AF-1 (6)

This equation reads as follows: “for all acceptable physical systems, what we know about the
system when applying the physical process A~YA* is compatible with what we know about the
system when applying the physical process A* =17,

When an identity P = @ holds, the processes P and @ are said to be identical. In practice,
two processes may be identical only for a large range of fragments §, in which case the identity
P = is an approximation valid on that range.

Quasi-identical Processes In general, two physical processes P and @ are not truly identical
as far as we know, but we can find a reversible physical process T' so that P =TQ. In that case,
we will say that P and (Q are identical by transformation 7'. In particular, we will often consider
physical translation or rotation transformations, and state that P and ) are identical by rota-
tion or translation.
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While it is more precise to say that two physical processes are quasi-identical if they are
identical by a combination of translations and rotations through space and time, in the rest of
this article, we will simply call them identical unless the context requires the clarification. Fur-
thermore, since we based all our definitions of “identical” on what we know about § or A, it is
actually possible for distinct physical systems to be truly identical? in that sense.

Commutativity Consider now two independent measurements X and Y, “independent”
meaning that the result of X does not depend on the fact that we performed a measurement of
Y previously, and conversely. The first condition can be written as eq. (7) and the second condi-
tion can be written as eq. (8):

X=XY (7)

Y =YX (8)

If we further know an inverse process X ~!, then eq. (8) yields XY = X Y X, eq. (6) leads to
XY=X"1XXYX,eq. (2)leads to XY = X! X Y X. Finally, another application of eq. (6)
results in eq. (9):

XY=YX (9)

In physical terms, this shows that under the conditions stated above, two physical measure-
ments that are independent from one another correspond to commuting physical processes. This
result is particularly interesting in relationship with quantum mechanics, where such commuta-
tion relations are the foundation for the Heisenberg uncertainty principle[1, 2, 3]. After compar-
atively very little work, it is satisfying to find a result which appears qualitatively compatible
with validated theories and experiments. We will return to this topic later.

Note that eq. (7) and eq. (8) also hold when X and Y are the same measurement. Using
eq. (2), one could argue that a measurement process is also independent from itself, since its
result does not change if it was performed earlier.

Nonperturbing behavior Another formal manipulation is that Y = (X! X) Y by definition
of the inverse, and then since X Y = X this means that Y = X ~! X. In other words, Y appears
to be indistinguishable from an “identity” process.

Naturally, one should certainly not interpret that as indicating that it is an identity process
respective to any arbitrary physical process, but only with respect to the processes being consid-
ered. The corresponding approximations are part of the set of hypotheses H required for
the “equality” to hold. In particular, we do not know if X or ¥ commutes with any other phys-
ical process or if the inverse processes we chose for X or Y are legitimate inverses for any other
process. Consequently, without additional hypotheses, we cannot deduce from this reasoning
anything about the interaction of X and Y with any other physical process.

However, one can say that for the conditions listed above to hold, X and Y must behave as
an identity, i.e. they do not perturb the system as far as either X or Y is concerned. This con-
dition corresponds to the “ideal measurement” in classical mechanics, where the conditions listed
above generally hold. In other words, measurements in classical mechanics that commute and
have an inverse can be considered as not perturbing the system in any way. A related observa-
tion is that, in that case, |Y§| = |§|: the result of the measurement does not require that the
measurement be actually performed. Again, this corresponds to the common classical
mechanics “reality hypothesis” that the value of a measurement predates the actual measure-
ment.

Linearity If A is a repeatable process, A §, A% §, and more generally A*F all describe valid
physical processes applied to §. Experience tells us that sometimes, a measurement M is unable
to distinguish between one instance of A and another. For instance, if A is a process adding an
identical photon each time, measurements will not be able to tell one of the added photons from
another.

4. Physics texts often use the word indistinguishable in that case.
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When these conditions are met, we can choose for M a linear graduation obeying eq. (10):
even if the measurement cannot distinguish between two individual instances of the process A, it
may still help us count how many times it occurred.

IMA"§|=n [MAG| (10)

The precise meaning of the multiplication in eq. (10) depends on the actual mathematical object
used to represent |M §| for this particular measurement. However, the general structure that
emerges from these relations, linearity, does not depend on this choice.

As a matter of fact, the choice of linear graduation is never mandatory. If evolution had not
given us a sense of vision, we could very well have decided to base our units of length not on
counts of optically aligned identical reference objects, but on the energy it takes to throw an
object at a given distance. This particular measure of distance would not be linear relative to
ours. In practice, however, a linear graduation is often chosen, because the symbolic measures
|M A™§| naturally follow a simple group structure.

It is actually not unreasonable to speculate that our species learned how to count trying to
measure groups of identical objects. In other words, eq. (10) can be seen as the kind of relation
from which we learned how to count. To fulfill the need to measure groups of pebbles, the sim-
plest way is to consider all pebbles equivalent, in other words to make them “indistinguishable”
for the measurement being considered. Then, arithmetic on natural numbers is the group struc-
ture that can be derived from the impact on this particular physical measurement of operations
on groups of pebbles such as joining them (addition) and joining multiple groups with similar
measure (multiplication).

Sometimes, a measurement may distinguish between two physical processes A and B without
being able to distinguish two instances of A or two instances of B. If arbitrary sequences like
ABBBABAAT can represent a physical process, and if physical processes A and B commute,
we can extend the reasoning leading to eq. (10): if we cannot tell two instances of A apart, nor
tell two instances of B apart, the best we can do is to count how many times each was applied.

More generally, if § can be constructed from a “ground state” §g by repeated application of
commuting physical processes P, ..., P,, that is if § = Pll“ P2k2 ...P,’f"&g, and if M is a measure-
ment that cannot distinguish one P; from another (even if it can distinguish a P; from a P;
when i+ j), then the graduation for M can be chosen to verify eq. (11):

m=|M3|:Z ki|MPiSO|=Z kim; (11)

We can consider the physical states that are constructed from a common ground state §o using
repeated applications of mutually independent physical processes P;. As demonstrated earlier,
the condition that the P, are independent is sufficient for them to commute. Consequently,
eq. (11) applies. By this definition, any such physical state § can be written as § = [] PF %o
and is therefore defined by the vector (k;) € N™. Under the condition identified above, measure-
ments are linear operators on these vectors. This condition will be called the linear approrima-
tion, and it is frequently applicable in practice. For example, the measurements of mass for par-
ticles that move slowly with respect to one another follow a linear approximation. We will see
shortly that this condition also appears to hold for measurements of distance and time.

2.4 Remarks

The formalism shown above allows us to reason quickly and efficiently about physical processes
and measurements, and to define what we choose to call a measurement. However, it does not
impose a particular mathematical formalism, such as Hilbert spaces or tensors. While it uses a
mathematical notation of its own, it still does not really constrain the mathematical formulation
of a theory of physics. For instance, the mathematical entity that we wrote as m in eq. (4) can
be practically anything, from a simple binary value (“true”, “false”) to a much more complex way
to represent the knowledge we gained about the physical system § from measurement M.
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Incompleteness In the rest of this article, we will refer to this formalism as the “theory of
incomplete measurements” (TIM). There are two reasons for this name:

e Measurements are incomplete in the sense that they only are something we know about
the universe, and not what the universe is.

e Measurements need not be instantaneous, and the formulation is uniform irrespective of
how complete a particular measurement is.

More structure is required Additional observations must be made to give more structure to
our knowledge of the universe and to build a theory with predictive power. Much of this knowl-
edge can be borrowed from established theories. As a matter of fact, it probably must, since any
new theory must obviously be compatible with what we already know. The following sections
attempt to show the general direction that this effort should take.

Symmetry between all measurements In the TIM, no measurement, not even space or
time, is given any particular pre-eminence over the others. This is in contrast with the most
common formulations of both general relativity and quantum mechanics, where space and time
measurements are generally given a very special role, space and time being the “background”
where other elements of the theory are defined. Preserving the original symmetry while we dis-
cuss space and time will be an important constraint.

Non-equivalence of all measurements When one of the existing theories uses a variable,
for instance z, that variable is implicitly associated with a physical measurement X. To the
extent that the precise physical measurement X for x is never specified in the theory, one or
several of the following assumptions is generally made, more or less implicitly:

e All physical measurements of x are equivalent as far as the theory is concerned.

e Differences between two physical processes X; and X, implementing a particular mea-
surement x are of no concern for the mathematical properties of x.

e The measurement with the highest resolution or widest range is necessarily superior.

Using various examples, we will demonstrate later in this article that these assumptions are not
justified. We can, however, give a quick analogy that helps understanding, intuitively, the pos-
sible negative effect of these assumptions. Measurements can, in a sense, be seen as functions
mapping a system in the universe onto symbolic or numerical values. Two measurements agree
when measuring a same object because they are calibrated to match.

One often overlooked but capital point is that the number of calibration systems is finite.
Without additional knowledge, it is not more reasonable to assume that the two measurements
are equal because they match on a finite number of calibration systems than it is reasonable to
deduce the equality of two arbitrary mathematical functions based on their equality for a finite
number of values.

Relativity of Measurements Special relativity asked us to give up the notion of “absolute
speed”, general relativity the notion of “absolute coordinates”. It may be time to more generally
give up the notion of “absolute measurement”.

If we must abandon the assumption that the precise physical process for a given measure-
ment has no bearing on the mathematical properties associated with the measurement results,
we gain a new principle of relativity: No measurement is by its nature better than another to
express the laws of physics.

A new principle of relativity makes it necessary to specify additional information in the
theory. In special relativity, time is no longer absolute, so we need to specify what observer a
time is relative to. In general relativity, no space-time coordinate system is naturally preferred,
which means that we must specify a metric. In the TIM, no physical measurement is naturally
preferred, which means that we must specify the physical measurement process.

3 Relativity Theories

The TIM formalism presented above allows us to take a fresh look at special and general rela-
tivity theories[4, 5|, starting with the mathematical structure of space-time coordinates. The
justification for this exercise is to identify, in the mathematical structure of these well-estab-
lished theories, where the details of physical measurement processes may matter.
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3.1 Space-time

The space-time coordinates are traditionally noted as z, y, z and ¢. In the formalism presented
here, we need to specify how these coordinates are being measured.

Time Time is usually measured by counting the repetitions of a given physical phenomenon|6],
whether it is a cosmological physical process like the rotation of earth around its axis, the oscil-
lation of a pendulum, the oscillation of a quartz crystal, or the decay of the excited states of
some atom in atomic clocks.

These measurements of time are therefore based on the repetition of a same physical process,
the “beat” of the clock, that we can denote as 671, and on a distinct time measurement process T’
that counts these processes to measure a time. The general definition of a time measurement
based on periodic processes is given in eq. (12), where linearity is a consequence from the fact
that two 0T are identical, or at least indistinguishable through measurement 7T'. In this equation
and the following, 67" is the name of a process distinct from 7', not some operator § applied to
T, so that the notation §7* unambiguously means (67').

t=|ToT* Fo| =k |TOT Fo| =k ot (12)

This choice places the origin of time based on a universe fragment §o that we can consider as
the universe before we start counting time. More importantly, according to eq. (3), the measure-
ment of time is local to §g, as required by special relativity: two different observers may measure
a different time even if they apply identical processes T and 6T to different systems § and §’.
We will call T' the measure of time, 0T a displacement through time, the corresponding numer-
ical values t is a time coordinate, and the numerical value dt is the time resolution of our mea-
surement.

The linearity condition in eq. (12) only holds to the extent that 7' cannot distinguish one d7°
from another. Often, physical processes are indistinguishable only for a limited number of repe-
titions: oscillations of a pendulum decay over time if no energy is injected into the system;
carbon-14 dating relies on atom decays that are individually indistinguishable, but end up
changing the overall atom population measurably over a large period of time. Linearity allows
us to consider two measurements of time based on different physical processes as identical (up to
a scaling factor), and thus measuring the same time. On the other hand, such a simple scaling-
based identity may hold only for short-scale time measurements.

All physical systems evolve through time. Choosing any particular local displacement
through time §7T is sufficient to define the time evolution of any universe fragment §y using
eq. (13).

i = T30 (13)

An interpretation of this equation is that the system evolves along time through the same phys-
ical process that causes the passage of time we measure with 7. The observed evolution of §
depends on which process 0T was picked up. For instance, consider that §77 is the beat of a
clock you hold in your hand, and §7% the beat of an identical clock that stays in the lab. If you
start moving, special relativity tells us that the observed evolution of the universe according to
0T diverges from the evolution according to §75.

Distance Measuring distance is also performed by counting identical physical events in space,
for instance how many times a hero’s foot would fit between two objects, or how many wave-
length of an electromagnetic wave define one meter|7]|. Like for time, we can identify a process
of displacement through space X and the associated measure of space X, with a linear defini-
tion of a space coordinate x shown in eq. (14).

2 =|X0X*Fo| =k | X 6X Fo| =k oz (14)

Like for space, the choice of origin for a distance measurement is based on a particular system
Fo that we consider as the “center of the universe” for the measurement being chosen. The mea-
surement of space is local to §g as required by special relativity. Like for time, X is the measure
of distance, X a displacement through space, x is a spatial coordinate, and dx is the resolution
of our distance measurement.
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There is an added twist for space because one cannot find a single choice for the displace-
ment of the system through space. Instead, experience shows that we need three locally inde-
pendent displacements through space to represent the displacement between two arbitrary sys-
tems. A generalized local displacement through space is given by an equation like eq. (15).

The processes 60X, 0Y and 0Z, as well as the associated measurements X, Y and Z, can be
chosen to be identical to one another by rotation. In the rest of this article, we will ignore the
complication of choosing processes that are not identical through rotation, even if this is often
done in practice: one may very well be measuring altitude using air pressure while latitude and
longitude are measured relative to the ground.

Space-time displacement Displacement through space and time can also be chosen to be
locally independent from one another: space-time is locally Minkowskian. A more general form
for the displacement of a system through both space and time is given by eq. (16):

gwuzt:(SXw 5Y1/5Z25Tt§0 (16)

Adopting standard terminology, a choice of four independent measurements X, Y, Z and T is a
choice of space-time coordinates, since it dictates the corresponding coordinates x, y, z, and t.
Following a common general relativity convention, we can index the coordinates and call them
X;, where X is time and X7, X2, X3 are spatial coordinates?.

As long as the processes 0.X; and X; exists physically, we can generate any particular coordi-
nate value z; (up to a resolution dx;) by applying the corresponding displacement enough times,
according to eq. (12) and eq. (14). For that reason, the corresponding individual displacements
0X; can be called the generators of the coordinates X;. On the other hand, that does not neces-
sarily imply that we can reach all points of the universe using a particular choice of coordinates.

Change of coordinates The choice of coordinates X; is not unique. As suggested in section
2.4, we must now consider two different kinds of coordinate changes:

e Coordinate changes where quasi-identical physical processes are used, and
e Coordinate changes due to a change in the physical processes being used.

The theory of general relativity focuses on the first kind of coordinate changes, called a “change
of reference frame”. Implicitly, general relativity assumes that space and time coordinates as
measured in a given reference frame are unique and independent of the physical process by
which they are being measured.

3.2 Special Relativity

The definition of spatial coordinates given in the preceding section does not correspond to the
traditional definition of space-time as a 4-dimensional continuum generally used in special rela-
tivity. We must now find a way to reformulate the original principles of special relativity using
only measurements, ideally without making space or time unreasonably pre-eminent.

Continuum vs. Discrete Equations used in special and general relativity are problematic
when analyzed from a TIM perspective. Albert Einstein already pointed out that the choice of a
Gaussian metric is only possible if small enough domains of the continuum can be considered
Euclidean[8]. Therefore, an implicit requirement of the formulation of general relativity is that
physical entities, including space-time, energy and momentum, are continuously differentiable.
Unfortunately, using the TIM definition, space and time measurements are not even continuous,
since they are reported using a discrete graduation, and as we discussed above, generally based
on a discrete count of identical physical processes.

5. Since we use an exponent notation to count applications of a process, it is less confusing to use a “lower
index” notations when indexing physical processes, even when an “upper index” notation like x® would typically
be used in general relativity.
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However, any measurement for which the linear approximation eq. (11) is valid can be identi-
fied with a linear function m of the measurement coordinates k;, and that linear approximation
m(ki, ..., kn) = kim; is continuously differentiable on R™ with respect to each k;. This makes
it possible to replace the actual measurements with a continuously differentiable function that
matches any possible measured value.

This is true in particular of space and time coordinates. We can replace the actual measure-
ment z(k) =k dz, k € N with the continuous extension x(k) =k dx, k € R. The latter is contin-
uous and differentiable, and it matches all possible measured values of x. This approximation is
perfectly legitimate in practice even for differentiation, because the number of repetitions of the
fundamental processes dX; is usually chosen to be very large (for instance, there is an extremely
large number of atoms in the typical tape measure), so that the resolution dz; is very small rela-
tive to z;. In this “smooth” limit, there is no practical numerical difference between the limit
df (x+ndz)— f(

5 (7) and an approximation like ! — ) when n is sufficiently small.

From physical to mathematical rotation A similar, but more subtle problem occurs when
we write relations between the results of various measurement processes, because the simplest
form of these relations may involve continuous mathematics. This is the case in particular for
the mathematical rotations that we associate with physical rotations.

We observe experimentally that the relations between measurements of distance in space give
them the structure of Euclidean geometryS. A common formulation of Euclidean geometry uses
real numbers and points in R™ (where n = 3 is used to model physical space). There are good
reasons for this choice, which are evident if you try to build an Euclidean group over IN™ for
example: N is not closed under arbitrary rotations. This may appear to be a show-stopper for
the TIM, where measurement results are by construction isomorphic to subsets of N, as visible
in eq. (11). But in practice, we can retain the Euclidean group on the continuous extensions.
This structure will allow us to make predictions at an infinite resolution, and from there, predic-
tions at the actual resolution.

For example, if your only measurement apparatus has a resolution of 1 c¢m, and if you rotate
an object of length 10 cm by 45 degrees, the predicted mathematical length based on the contin-

=10 g ~ 7.07. It is however unreasonable to claim that

uous extension above will be 10 cos(45)
your measurement apparatus will give you the result 7.07 cm (or, worse yet, the exact irrational
value), since its resolution is only 1 cm. We may have taken the bad habit of saying “it will mea-
sure between 7 and 8 cm” because our eye has a much higher resolution than the graduations on
typical measurement tools like pocket rulers. But in reality, the result returned by a physical

measurement with resolution 1 cm should be 7 cm or 8 cm depending on the instrument.

Problem solved by special relativity The original presentation of special relativity intro-
duced the theory using concepts such as inertial reference frames. These concepts are slightly
complicated to translate in terms of measurements. On the other hand, the constancy of the
speed of light is much easier to express. Historically, this was also the fundamental issue that
special relativity tried to address, both from an experimental point of view (Michelson-Morley

experiment) and from a theoretical one (justifying why speed of light in Maxwell’s equations was

1 .
C= =, and therefore independent from the speed of the observer).

As we now know, the solution to this problem revealed that space-time has a Minkowski
structure, where the distance is written using an equation like ds? = ¢ dt? — dz? — dy? — dz? and
is identical for all observers in a well-chosen classes of observer (“inertial reference frames”). For
the same class of observers, the equation expressing the distance should also hold in the TIM,
but we may need to specify how the observers measure ds or dz.

Euclidean space Let us start with the observation that, at least for well-chosen measurements
of distance (in the same sense as we talked about a well-chosen class of observers), we can give
our measurements of spatial distance on a physical plane the structure of a 2-dimensional
Euclidean group. The distance can be written as ds? = dz? + dy?. As explained above, this is
really a continuous extension of discrete observations approximately verifying Pythagoras’ the-
orem. The mathematics corresponding to this particular mathematical structure are well known.

6. Like for counting, it is reasonable to suppose that our species initially learned Euclidean geometry from
these observations, not from axiomatic reasoning.
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For systems that can be assimilated to a point moving in space along a trajectory, we per-
form the measurements of space-time coordinates relative to the individual systems. In eq. (15),
this reference system was denoted as §y. To convert the coordinates x, y as measured from
system §o to the coordinates z’, y" as seen from system §(, we must consider the translation and
rotation required to bring one tangent referential system to another.

Lo

y Yo F

Figure 1. Change of coordinates
The coordinate changes between (z,y) and (2, y’) for the two-dimensional example shown in
figure 1 can be written as a combination of:

e a translation by a vector (zo, yo) where xp and yo correspond to the measurement relative
to § of the point that measures as (0, 0) relative to the system §'.

e a rotation by angle 6.

The general formulation of the coordinates change is well known and given by eq. (17):

x'=(x —xzp) cosd — (y — yo) sin O (17)
y'=(x —x0)sinf + (y — yo) cos b

The relations written in eq. (17) are exact over real numbers. As discussed earlier, they are
always approximate with actual physical measurements, as can be seen on figure 1 if we postu-
late that the grid indicates the resolution of the measurement relative to system go.

If the coordinates of the trajectory of system §’ relative to system § are parameterized as
continuously differentiable functions z(s) and y(s), we can also express cos 6 and sin 6 as

eq. (18):

dy
——ds
cosf = LT
ds ds
d (18)
sin @ = ﬁ
x 2
() + ()
Assuming %7’: 0, another formulation is eq. (19):
1
cosf = —dM
/1)
da (19)
sin @ = d—ydw
Vaaitm

The reasoning above can be made entirely in R™ (R? for the figure above) based on the axioms
of Euclidean geometry. It is a purely mathematical reasoning. However, as shown earlier, it also
applies to the symbolic results of measurements, i.e. to the physical world, but only to the extent
that Fuclidean geometry applies to them as well. I can choose a calibration for my spatial mea-
surements so that Euclidean geometry relations become inexact, and then none of the equations
above can be considered true for such measurements.
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Space-time coordinate changes One of the essential findings of special relativity was that
the same reasoning holds when considering a coordinate change involving both a space and a
time coordinate, with a significant difference: the numerical distance s that is preserved verifies
a Minkowski metric ds? = c2dt? — dz? or ds? = dz? — ¢ dt? instead of the definite positive Gaus-
sian metric ds? =daz? + dy? that is preserved between space coordinates.

There are interesting consequences to a distance written as ds? = dz? — c2dt?. Compared to
the Euclidean metric, it can be seen as a transformation y — i ¢ t where i2 = — 1, a transforma-
tion known as Wick rotation. Whereas for classical rotation between two space coordinates,
cos 0 < 1, for rotations between a space and a time coordinate, cos @ > 1, since it takes the math-
ematical form of an hyperbolic cosine. It is easy to verify that what we wrote as cos 6 takes the
form shown in eq. (20), traditionally denoted as 7 in special relativity textbooks. Similarly, sin
is traditionally written as ¢ 8 7. In that case, eq. (17) transforms into the well-known Lorentz
equation shown in eq. (21).

cosl = ——=1r (20)

{x':’y(ﬂc—xO)—’Y”(t_tO) (21)

1
t'=(t —to) — =zvv(z — o)

The value of this reasoning is not in the mathematics, which is well known, but in the possi-
bility to do it under the conditions imposed by the TIM. As long as the Minkowski metric con-
dition ds? = dz? — ¢2dt? holds between the measurements we chose, the Lorentz transformation
and, consequently, the known effects of special relativity remain valid.

Special relativity effects The reasoning above did not involve any notion of “inertial refer-
ence frame” or “non-accelerated observer”. This arguably makes explaining some well-known spe-
cial relativity effects easier, since they can be described by analogy with what we usually
call “perspective” in the case of space-space rotations. Naturally, the transformation y — @ ¢ ¢
means that the effects will be slightly different. Perspective induces contractions for space-space
rotations that are related to cosf < 1, and so it induces dilatation for space-time rotations where
cos § > 1. Conversely, dilatation effects for space-space rotations that are related to cos 6 turn
into contractions for a space-time rotation.

This simplification is particularly noticeable for special-relativity effects that involve some
acceleration. Those are often considered tricky to deal with in the more traditional formulation
of special relativity. For instance, the so-called “Langevin’s twins paradox”[9] is illustrated on
figure 2. The straight arrow along the horizontal axis represents the trajectory of a twin who
remains on earth. The curve represents the trajectory of a twin who travels in space at high
speed. For space-space rotations, as shown on the figure, the curve is always longer than the
straight line. It is easy to verify that the elongation factor takes the form of [ ﬁ along the
curve, which is always greater than 1 when cos # < 1. On the contrary, if cos 8 > 1, then the
curve is always shorter than the straight line: less time elapsed for the moving twin than for the

twin who remained on earth.

N

Figure 2. Twins paradox

Space-time and electromagnetism A relation observed between spatial measurements, such
as ds? = dz? + dy?, is not overly surprising, since it relates measurements that we can transform
into one another by physical rotation. But if such a relation indicates that essentially the same
physical process is at play for x and y, shouldn’t we also infer the existence of a single physical
process behind measures of x and t from the Minkowski metric relation ds?=dz? — c?dt??
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What process can this be? The presence of ¢ in the metric formula suggests that this should
be related to the propagation of electromagnetic waves. Is it reasonable to see electromagnetism
as the foundation for the measure of distance and time? At a macroscopic level, this certainly
seems plausible. Our definition of the meter is now based on light waves. Measurements
involving rods use the properties of solids which are held together primarily by electromagnetic
forces. Our definition of time is itself based on the de-excitation of atoms, and this is the funda-
mental process generating photons.

The traditional formulation of electromagnetism is written using a space-time background,
on which electromagnetic fields are written. In this view, space and time exist even if there is no
electromagnetic field or interaction. However, the remarks made above suggests that this
hypothesis may be incorrect. The properties that we have traditionally attributed to space and
time might express relations defined primarily by electromagnetic interactions?.

3.3 Non-Euclidean Geometry

The reasoning in the previous section was articulated around observed properties suggesting a
locally Euclidean or Minkowskian geometry. One of the fundamental innovations of general rela-
tivity was to formalize the more general case where the propositions of Euclidean geometry do
not necessarily hold. We will now see that the need for this non-Euclidean formulation not only
remains in the TIM, but can be justified for new reasons.

Non-commutativity The reasoning in the previous section implicitly requires that displace-
ment through space and time coordinates commute locally. For example, eq. (16) is valid only
to the extent that we cannot distinguish through any measurement between the state of the uni-
verse defined by §,y = 0X Y §o and Fy, = Y IX Fo. Otherwise, eq. (16) would predict two dif-
ferent evolutions of the universe depending on which path is chosen, and this contradicts our
original definition of the notation §; = Fs.

The fact that displacements commute locally does not imply that they still commute after
being repeated a large number of times®. In other words, we cannot deduce 6X™0Y™F =
SY™5X™ from §XI0Y*F = §Y*5X7 whenever n > j or m > k. As a matter of fact, at a large
enough scale, we observe that physical displacements through space-time do not generally com-
mute.

oX 1

sy -1 oY

0X

Figure 3. Commuting displacements

7. It would be particularly ironic, if this hypothesis proves to be correct, that Einstein’s quest for a theory
unifying gravitation and electromagnetism was, in a sense, already fulfilled with his own general relativity.

8. This statement may seem mathematically contradictory, if one forgets that the TIM “equality” is based on
what we know and can physically measure. It is experimentally possible for two processes to be indistinguishable
when repeated a small number of times, but to diverge at larger scale. One has to remember that the set of phys-
ical hypotheses is part of the definition of equality we use, and the maximum number of applications of a physical
process can be part of these hypotheses.
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To illustrate this, consider mobiles subjected to gravitation forces keeping them at the sur-
face of our planet. In a room, moving one meter forward followed by one meter sideways brings
you practically at the same point as moving one meter sideways followed by one meter forward.
The displacement in figure 3 is is practically indistinguishable from “returning to the same
point”. Considering for simplicity that Earth has a radius of roughly 6000km, the angle o seen
from the center of Earth for a 1m displacement is at first order o = 600;%
error is in the order of 6000km (1 — cos a), and for such a small value of « we can rewrite that

as 6000km %2, so the displacement error made by assuming that earth is flat is less than 10~ "m.

. The curvature

Except under the most stringent laboratory conditions, this error is simply negligible.

However, if the processes “moving one meter forward” and “moving one meter sideways” are
repeated 107 times, the distance in each direction is 10000 km, or approximately a quarter of the
circumference of earth. In that case, the two points you will reach are about 10000 km apart, as
illustrated on figure 4 as seen from a pole.

oY

oX 1

T

Figure 4. Non-commuting displacements

Qualitatively, the relationship “X and Y commute” is therefore very different between the
two cases. However, from the local point of view of the mobile, there is no difference in the local
movements between figure 3 and figure 4. In both cases, we are moving for example “N steps
forwards, N steps left, N steps backwards, N step right”.

In this example, the non-commutativity of space-time displacements appears related to cur-
vature. This is not surprising, as the Riemann curvature tensor measures the non-commutativity
of the covariant derivative. Intuitively, by following displacements along two different displace-
ments X and J§Y, we are reconstructing in physical terms the parallel transport normally used
to evaluate the Riemann curvature tensor.

Geodesics One might be tempted to think that non-commutativity in the example above is
simply due to a bad choice of coordinates, because on earth we are not moving “straight” but
along the “curved” surface of earth. By this reasoning, the problem would disappear if we fol-
lowed a “straight line” along each axis. Our space and time measurements would then corre-
spond to an Euclidean geometry.

Unfortunately, in physical terms, it is difficult to define what a “straight line” is. Arguably,
one of the best physical definitions of a straight line is the path followed by a ray of light, yet a
number of physical experiments show two or more light rays starting at the same time from the
same point and reaching the same point at the same time. A simple optical lens shows this
property, but even in the vacuum, the property appears at large scale (gravitational lensing[10],
Shapiro delay[11]). It also show up in tabletop experiments, for example in the presence of
obstacles (Young’s slits experiments). The propagation of light is therefore not a very solid foun-
dation to build an Euclidean geometry on.

A similar problem exists for other definitions of straight lines (or geodesics). For instance,
one could define geodesics as the paths followed by “free-falling observers”. One space measure-
ment would be points separated by a constant local time interval along the path. But in that
case too, one can find two geodesics with the same start and end points in space-time, for
instance two opposite trajectories along the same orbit.
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Non-Euclidean geometry Mathematics tell us that if there are more than one straight lines
between two individual points, then the geometry is not Euclidean. Since the best definitions of
a straight line we have in the physical world exhibit this non-Euclidean property, we need to
give up the possibility to associate an Euclidean geometry to any system of coordinates based on
physical space and time measurements.

The justification given here is different from the reason given by Albert Einstein to postulate
a non-Euclidean geometry for space-time. His original motivation appears to have been
an “esthetic” desire to write a formulation of physics that did not favor any particular coordinate
system. But it was not, at the time, required to match strong experimental evidence, and it cer-
tainly introduced a lot of mathematical complication. The justification for this complication
really came a posteriori, when predictions of the theory were validated by experiments.

In an introductory book, Einstein also cited as a justification the existence of non-Euclidean
space-time hyper-surfaces predicted by special relativity, such as the surface of a rotating disk
along its proper time[12]. But that observation alone is not sufficient to prove that space-time
itself is curved, just like the existence of spheres in space does not prove that space is curved.
Indeed, the hyper-surface selected for Einstein’s example was defined by the path in space-time
of the points along the radius of a rotating galaxy. This hyper-surface is analogous in space-time
to an helicoid in space, and an helicoid is not an Euclidean surface. It is unclear how much
thought Einstein really gave to this particular example, one among many in the book.

The situation is different today. With the experimental evidence that we now have, we need
non-Euclidean geometry in the TIM because we do not know how to define an Euclidean geom-
etry relating space-time measurements, not because of any “first principle” consideration.

3.4 General Relativity equations

A reminder of the traditional formulation of general relativity[5] is useful to see how the TIM
may impact it. In the following equations, we will use Einstein’s convention of summing terms
with identical lower and upper indices. We will therefore avoid references to repeated processes
using the notation P™ to avoid confusion.

Mathematical tools Many of the formulas in general relativity are mathematical tools that
do not need any matching physical reality to be used legitimately. There is no issue using them
to manipulate the extension to R™ of any linear approximation function m(zy, ..., x,), including,
but not limited to, the space-time coordinates themselves. These mathematical tools can, in
particular, be used freely on mathematical spaces that have a different number of dimensions
than the 4 dimensions we observe in the physical space-time.

Let’s consider a set of coordinates z; in R™. A Gaussian metric ¢ is a rank (0,2) symmetric
tensor defining a measure of distance from individual coordinates, as shown in eq. (22). The
inverse of g, is written g#”.

ds? = g, dztdz” (22)

The Levi-Civita connection V defines a derivative D for a vector field V' along a curve v as
Dy V =V V. The covariant derivative generalizes partial derivative, adding a term that is the
change caused by curvature itself, so it writes as D A" = JA” +T1';,A”. The added term uses the
Christoffel symbol '}, = %gp)‘(augw +0ugr0 — OG-

The covariant derivatives do not commute, and the Riemann curvature tensor R;‘W is a rank

(1,3) tensor defined as R(u,v,w) =V,V,w — V,V,w — V[, ,jw. For the coordinate vector fields

9 0 . .
u=—— and v=+—, [u,v] =0 and the Riemann tensor measures the commutator of the covariant

Bzi 81?_7
derivative, i.e. R}, Ay=(D,D,—D,D,)A,.

The Ricci tensor is defined from the Riemann tensor in coordinate terms as R, = R}, . We
can then define the Ricci scalar by raising an index to get RY = g"”R,,, and then contracting to
obtain the Ricci scalar R= R},
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None of these equations makes any hypothesis about the physical universe. They play, in a
more complicated form, the same role as mathematical differentiation, rotations or translations
in our discussion of special relativity. For the same reason as was discussed in the special rela-
tivity section, we can therefore accept them as purely mathematical relationships in the TIM.
More precisely, all these relations can be considered as holding as long as we can write the
metric for 4-coordinates as shown in eq. (22), just like the coordinate transformations in special
relativity held as long as the Minkowski metric did?.

Physical values In contrast with mathematical tools, if we focus on gravitation, ignoring
other forces, there are two general relativity quantities that relate directly to physical measure-
ments. The space-time metric g,, relates to space and time measurements. The stress-energy
tensor T}, relates to mass, energy or momentum measurements. These two entities definitely
require a TIM analysis.

Another quantity appears in the equations, at least for some formulations. The cosmological
constant A relates to the shape of the universe at large scale. The status of the cosmological
constant is slightly more difficult, since it does not represent an intuitive measurement from our
everyday life. Measuring it is much more difficult[13], and mechanisms are still being proposed
to explain its emergence and evolution over time[14]. Arguments have even been presented that
a cosmological constant makes our own existence improbable[15]. This makes a non-speculative
discussion of this particular quantity significantly more difficult.

Metric and experimental choice The Gaussian metric g,, as defined above relates a choice
of distance ds? to small variations dz,, of the individual space or time measurements x,, which
result of a particular choice of coordinate measurements X;. Provided the measurements give
definite, non probabilistic results, there is no particular problem computing a specific metric
from space and time measurements, i.e. the factors g, from the individual z,.

There is, however, a problem in choosing which physical processes are equivalent to a space-
time metric in general relativity. Clearly, we know intuitively that mass or electric charge mea-
surements are in general not ideal methods to measure a spatial or time coordinate. But it is
difficult to explain exactly why. Given an arbitrary measurement system, how do you recognize
that it is measuring a distance or a metric?

Furthermore, when choosing between different measurements that we would intuitively con-
sider as space or time measurements, picking the best one is not always immediately obvious.
Imagine that we must choose between measurements made with a metal rod and measurements
made by measuring the trip time of a laser beam. What if the metal rod becomes really hot,
causing it to change dimensions or even melt? What if the laser beam has to travel through
water, where the high refractive index with alter both the path and trip time of the light?
External factors influence the physical measurements, but not in the same way.

In the context of the TIM, we need to identify precisely which specific physical measure-
ments the theory of general relativity actually talks about. Following the remarks made about
special relativity, and based on the kind of verifications already performed for general relativity,
it is reasonable to postulate that the only measurements for which the field equation of general
relativity is valid use metric measurements that are practically equivalent to the propagation of
electromagnetic waves in a vacuum. Other measurements can be considered equivalent to the
extent that they are primarily defined by such propagation. For instance, solid rods are held
together primarily by electromagnetic interactions between atoms, and we know that solid
matter is made primarily of empty space.

Stress-energy tensor The stress-energy tensor T is a rank (0,2) tensor that indicates how
energy and momentum flow. Specifically, T(u, v) is the flow along direction u of momentum
along direction v, where energy is represented by the momentum along the time dimension, and
the flow along the direction of time represents a density.

9. Obviously, more physical measurements will verify a general Gaussian metric than a Minkowski metric.
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Like for the metric, we have a problem defining precisely what measurement is valid to mea-
sure T. At first sight, a measurement of mass at rest with respect to the measurement appa-
ratus seems relatively easy enough to define: we put the mass on a scale. But this simple defini-
tion relies on the reaction of the mass to the pull of gravitation.

A more general choice is to define it as a linearization of the property of individual particles
using eq. (11), where the m; are chosen to balance out the reaction to an arbitrary force of a
body made only of particles ¢ and of a body made only of particles j. In other words, we define
system « as being twice as massive as system [ because system « reacts to an external force
like two systems ( put together.

But this definition remains problematic, because it does itself rely on acceleration, and accel-
eration itself is defined based on space and time measurements. It would be more satisfying if
we could avoid such an implicitly recursive definition of the mass.

This may not be entirely possible. For a single particle whose position is being measured
using the “radar method”, the Schwarzschild metric can be interpreted as the appearance of a
mass-dependent proper time delay y =4 G m/c® between the absorption and the re-emission of a
photon by the particle[16]. While it remains unclear how this mechanism would extend to mul-
tiple particles, it seems to suggest that mass can be identified to a proper time delay in some
fundamental interaction, and therefore cannot necessarily be defined in a way that does not
depend on measurements of time.

Cosmological constant The cosmological constant A appears in the most general formulation
of the Einstein tensor, as defined by eq. (23).

1
Gm,zRW—gR Guw —ANguw (23)

The value of the cosmological constant can only be deduced from the observations at large scale
of the universe. There is no strong reason at this point to believe that all choices of coordinates
X; would result in the same observed cosmological constant. We can speculate that A is a
parameter that depends on the choice of physical measurement defining the coordinates. It may
for example be an emergent property derived from time evolution of the stress-energy tensor|[14].

Field equation The law of gravitation in general relativity relates the stress-energy tensor T

to the Einstein tensor G as in eq. (24), where we choose k = Sch to match observations, kg

being Newton’s gravitational constant.

G=kT (24)

As noted earlier, we have some choice for the measurements we use for space/time coordinates,
and even if they agree to a very good extent locally, they may not agree at a large scale. If we
have two possible choices for X that lead to different values for G at very large scales, the value
kT cannot possibly be equal to both.

We may have already observed this effect. The problem of the “dark matter”[17] or the
anomalous acceleration of the Pioneer spacecraft[18] may be some of the first indications of a
divergence at large scale between the measurements we chose for space and time compared to
the measurements we chose for energy or mass.

Observations of cosmic events, such as the galactic collision in the “Bullet cluster”, have been
widely publicized as demonstrating the existence of dark matter[19]. However, they are based on
very indirect reconstruction of the gravitational field, by means of statistical analysis (weak
gravitational lensing). Our own atmosphere shows a significant tendency to create artifacts in
the propagation of light. We must keep in mind the possibility that gases or dust that result
from galactic collision would also cause various distortions of light. In any case, dark matter at
this point is not a settled topic[20].

Existence of a Minkowskian metric In general relativity, the equivalence principle of gravi-
tation and inertial acceleration is expressed as the existence of coordinate systems where the
metric is locally Minkowskian, and where the equation of motion of a free particle moving along
4-vector u,, is Du, =0.
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For the present theory, we postulated instead that:

1. we can find for any system gy four repeatable time and space displacements processes 6.X;
that are mutually independent.

2. the evolution of the system §y over space and time follows the local time displacement
0T = 6X, corresponding to the “passage of time”, i.e. § =T Fo.

This implies the existence of a local Minkowski metric. Since the §X; are repeatable and indis-
tinguishable by measurement X, the corresponding measurements x; obey the linear approxima-
tion. It is possible to associate a metric g, to the x;. The hypothesis that the 6.X; are indepen-
dent implies that the metric is diagonal. By scaling of the various x;, we can select a metric
which has only + 1, — 1 on the diagonal. No scaling is even necessary if we used identical pro-
cesses for the various X; and 6.X;.

We can’t have zeroes on the diagonal, as this would correspond to a non-observed physical
situation where a displacement along one axis does not change the distance measurement. This
is particularly true for any measurement based on counting electromagnetic wavefronts: there is
no way to select a space or time coordinate along which light is standing still.

The second postulate then requires that one of the four coordinates (corresponding to time)
be different from the others. We end up with a local metric verifying ds? = 623 — 6% — 623 — 023
or 8s%2 = — 03 + 6x2 + dx3 + 6x3, i.e. a Minkowski metric.

Geodesics The postulate that the passage of time is a physical process 61 indicates that,
locally, the measurement 7" will result in linearly increasing time values t. The condition that
the 0X; are mutually independent implies that at short scale, there is no linear dependency on
time of the chosen local Minkowskian space coordinates x; for i = 1, 2, 3. This yields the local
geodesic equation Du, = 0.

The reasoning leading from the local formulation to the formulation of the geodesic equation
in arbitrary coordinates, % + Fffp%%
in the context of the TIM as well.

=0, is purely mathematical, and consequently applies

Electromagnetism and ‘“forces” For gravitation, general relativity does away with the
notion of “force”, since the movement of a body follows a geodesic. This is not a general case,
however, since the same treatment does not apply to other known forces.

For instance, the treatment of electromagnetism in general relativity introduces additional
quantities, specifically, the electromagnetic field tensor F#” and the 4-vector electromagnetic
current J¥. These two tensors are related by the equation D, F'H = %J”. The current J” is a
conserved quantity, so it verifies ONFH 4+ OFFYA + 9VF M = 0. The effect on a charged object is
then given by the impact on the momentum-energy 4-vector P# of the electromagnetic field
F# given by the field equation eq. (25):

D,Pr=Lp pu (25)
m

These laws of electromagnetism in general relativity are not obviously related to space-time cur-
vature. In particular, eq. (25) is nothing less than the introduction of a “force” in general rela-
tivity. General relativity does not do away with forces, even if it is generally seen as giving an
interpretation of gravitation that is based on purely geometric considerations|[21, 22]. The move-
ment predicted by eq. (25) cannot be reduced to any curvature of space-time, because it
depends on the charge of the particle. A single space-time curvature cannot explain why one
particle would turn left while another with exactly the same properties but the charge would
turn right. Today, Einstein’s many attempts at giving a geometric formulation of multiple forces
using for example torsion|23, 24, 25| are generally regarded as unsuccessful.

General relativity therefore did not dispense with the notion of “force” entirely. While it
showed that specific geometric properties are equivalent to a force, all forces are not necessarily
of geometric nature or origin. This seems at odds with Einstein’s formulation of first principles
like the principle of general relativity. But this is exactly the conclusion one would expect based
on the measurement relativity principle, because geometry gives a preferred role to space and
time coordinates, which the measurement relativity principle precludes.
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3.5 Scale Relativity

General relativity is really constructed on a number of symmetries which are taken as axioms.
One of these axioms, which we already discussed, is continuous differentiability of space and
time coordinates. In that model, you can zoom on a system as much as you want, and still
expect space-time to look similar. This is not a property we observe with measurements, how-
ever. We know that we can cut a pocket ruler in two halves, and then again, and then again.
But we cannot do that beyond some microscopic scale, because the laws of physics change. You
need a minimum number of atoms for your ruler to be a fixed-size solid.

Zoom As we change scale, or zoom, we may need to change the choice of space and time mea-
surement for practical reasons. We therefore replace one choice of coordinates X;, valid at scale
A with another choice of coordinates X;,, valid at scale p. In order for the two choices of coor-
dinate X;/y and X;,, to measure the same physical locations, there must be a large range of
systems § where the two measurements give the same result, i.e. they verify eq. (26):

| X281 =X/, 3] (26)

Using eq. (14), we obtain eq. (27) which indicates that the two measurements are related by a
linear relation.

i = k0T n= ki) 0T, (27)

As discussed earlier, these identities are really based on what we know. They do not imply an
identity of the physical processes themselves. There may be cases where X,y and X;,, do not
return the same result. The set of systems where eq. (26) is verified is called the overlapping
range between X,y and X;/,,.

In particular, eq. (27) does not necessarily hold at all scale, i.e. for all possible values of k;/x
and k;/,. In other words, just because two measurements are equal on a given range of scales
does not imply that they are equal at any scale. One may remember the example of the move-
ment of a mobile on the surface of a planet, where the tangent coordinates as measured along a
laser beam match the planet coordinates locally, but not at large enough scale.

When zooming on the system and changing the coordinates measurements from X, to
Xi/u, we can define the zooming factor ¢y, relating actual measurements done with the choice of
coordinates X;/ to the actual measurements done with the choice of coordinates X;,,. Since
i/
kisx’
which justifies the name “zooming factor”: the

the measurements themselves are performed by counting physical processes, we define (y, =

5wi/>\

Whenever eq. (27) holds, we also have (y, =

u
zooming factor increases as resolution becomes finer.

Renormalization The same laws of physics apply on the overlapping range where eq. (26)
holds, whether they are defined using the measurement X,/ or X;;,. Combined with the lin-
earity of eq. (27), the equality on a large enough range of systems § often implies that the laws
themselves must remain identical under a change of measurements. This is certainly true
for “simple enough” laws, such as laws relating polynomial functions of the coordinates, since it
is sufficient in that case to supply a finite number of points to completely define the law.

On the other hand, distant laws of physics, for example laws based on values measured
at “infinity”, are not guaranteed to remain identical under a change of space-time measurements.
The measurements may match locally, yet diverge at large enough scale.

These remarks can be seen as a physical justification for remormalization, a common tech-
nique when searching for quantized versions of field theories|26]. Renormalization assumes that
the laws of physics remain identical when zooming out, after one has eliminated degrees of
freedom that are no longer relevant at the scale being considered. When renormalizing, integrals
to infinity or around poles often diverge and must be replaced with actual measured values,
whereas the local laws of physics remain identical. The reason we need to perform this replace-
ment is really that we gave more credit to a mathematical formula than we should have.
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There is an important practical consequence of the reasoning above. While we can consider
local laws as valid at any scale, irrespective of the physical process being used, distant laws may
depend at small or large scale on which physical measurement was used.

Scale invariance Change of coordinate measurements corresponding to a zoom introduces a
new coordinate, the resolution A at which the measurement is being done. This coordinate is
visible in the notation X;/5. The resolution may not be sufficient to uniquely define the physical
process we are referring to, but it is necessary.

The consequences on the structure of space-time of an explicit resolution coordinates were
studied in details by Laurent Nottale. In particular, he postulated the existence of a universal,
absolute and impassable scale of nature that is invariant under change of scale[27]. This scale
plays for zooming a role similar to ¢ for velocity, and similarly requires a non-Galilean reformu-
lation of the law describing the combination of two changes of scale. This leads to an interpreta-
tion of space-time as having fractal properties[28]. A number of interesting results and predic-
tions were made based on this theory, including predictions on the location of planets in solar
systems, or finer computations of the coupling constants.

Existence of a constant scale As discussed above, local laws of physics must be invariant
through renormalization after zoom (or change of resolution). A constant with the dimension of

a scale, Planck’s length [, = ,/Z—f, can be extracted from such local laws, most notably

Schroedinger’s equation (a local law where & appears).

When we discussed special relativity, we observed that the appearance of a constant c¢ in
Maxwell’s equations was problematic, because this constant, despite having the dimension of a
speed, did not transform like other speeds. This made it necessary to introduce a new form of
symmetry, the Lorentz transformation, that would preserve c.

We face the same problem with [,: this constant has the dimension of a length, yet it does
not appear to transform like other scales. This seems to suggest that unlike what is generally
stated[29], there is indeed a preferred length scale in the universe. If this is true, then Nottale’s
hypothesis appears necessary, and validates the reasoning leading to a “non-Galilean” law for
combining scales.

4 Quantum Mechanics

The TIM formalism also gives us insight into the traditional formulation of quantum mechanics.
Actually, the impact on quantum mechanics is probably much more profound than the impact
on general relativity. We will demonstrate that we can derive many of the “axioms” of quantum
mechanics from our original postulates, including the mathematical formulation of the wave
function 1. This leads to a novel interpretation, which is arguably simpler than the traditional
interpretations known as “Copenhagen” or “Many Worlds”. More importantly, it suggests a dis-
crete (as opposed to continuous) normalization condition for .

4.1 Predictions and Probabilities

In general, measurements performed earlier on a system § are not sufficient to make a detailed
prediction of the result of a new measurement. Instead, what we know about § allows us to
make a probabilistic prediction on the outcome of the measurement.

N-valued measurement The simplest most-general form of measurement symbolic result is a
set with n different values my, ..., m,. From a physical point of view, we do not need to consider
continuous measurements, because they are physically unrealistic, in the sense that the gradua-
tion itself cannot be continuous.

For such a measurement M, a prediction on the measurement result m is represented by a
vector of probabilities (u;) where wu; is the probability to measure m;. Such a vector can there-
fore represent the state of any system § as far as the measurement M is concerned.
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Ket representation Since u; represents probabilities, two conditions must be met: 0 < u; < 1
and Y wu; = 1. These conditions are more easily expressed if we write each probability as a
square, i.e. we write u; = 17. The condition > 1? =1 is necessary and sufficient to guarantee
both conditions on the wu;, so the 1; can be seen as forming a unit vector in R", i.e. they belong
the the unit sphere $7 1.

Using Dirac’s bra-ket notation, we can write the vector as |¢) and the probability condition
as (¢|¢¥) = 1. One particular vector written as |k) correspond to a certainty that the measure-
ment will return the symbolic value my. Its component representation verifies 12 = d;;. Based
on the definition of the 1?, the probability to find the result |k) when the system is in a state
|1} is (k|w)2 The various |k) form a basis of R™

Physical processes If § is an initial system state represented by a probability vector |ig), P
an arbitrary physical process, § = P § the final system state after applying the physical process
P, and |v¢) the probability vector in the final system state, then the effect of P as far as we can
tell based on measurement M is to transform the probability distribution as |¢) = P|4), where
P is some arbitrary operator in $” ! that transforms the probabilities in a way that matches
what we know of the effect of the physical process P.

There is no reason for the operator associated to an arbitrary physical process to be linear.
For instance, one might consider a physical process ensuring that the next measurement result
for M will be mg. Such a process would transform any probability state 1) into a state |k). In
general, P is not even an injective function. For a measurement M, the operator M maps a
probability state |1/) to a random state |k) with probability (k| )2 Therefore, this operator
gives different (random) results for the same input.

Indistinguishable processes If P; and P, are indistinguishable processes as far as M is con-
cerned, then the probability outcome should not depend on whether the process P; or Ps is
applied to the system §. Assuming that the system § can be constructed with an arbitrary
probability state |¢), we get Vi, ]/51|§/1) = P\QW), which means that P; = Ps. Processes that are
indistinguishable with respect to M are associated with the same operator on $7 1.

Measurements and Eigenvalues If the physical process P is the measurement M itself, the
probability vector M [} indicates a certainty for the measured value my and an impossibility
for the others, so M |1)) = |k). The repeatability condition |M M §|=|M F| implies that once the
measurement result my is obtained, the measurement will continue to yield the result my. This
implies M M |¢) = M |), or |k) = M |k). Therefore, the probability state immediately after a
measurement is an eigenvector of the operator M associated to the measurement process M.

Linearized operator The operator M is a possibly non-linear operator over $” ! verifying
M|k> = |k). If the m; are real numbers, one can define a linear operator M defined as taking
the |k) as eigenvectors with value my. Since the |k) form a basis, M is defined entirely by the
equations M |k) =myg|k). This operator has two interesting properties: it is linear, and it can be
used to compute the expected value (in a probability sense) E(m) of the measurement M for a
system described by the probability vector |¢).

The reasoning is exactly the same as in “traditional” quantum mechanics. Projecting [v)
over the individual basis vector |i), [¢) = SO (+]i) |i). Applying M, we have M|¢y) = 3
(]i) M|i). Applying the eigenvector equation, we get M |1) =" (¢|i) m;|i). Taking the inner
product by [1), we obtain (¢|M |1) = 3 m;(s|i)2 Since (1)|i)2 = ¢? is the probability to
obtain measurement result m;, we finally obtain eq. (28):

E(m)=(y|M|y) (28)
Note however that M |1) is no longer on the unit sphere $”~! in general, so it is no longer a

probability vector. This is a practical drawback of M compared to M, in particular if 0 is an
acceptable measurement value, because we need to renormalize probabilities after applying it.

Linear approximation A measurement M verifying the linear approximation in eq. (11)
defines a countable set of possible measurement results my,,. . ,, since all the k; belong to a
countable set. We can write the probability vector indicating a certainty that the measurement
result is my,, &, as |ki, ..., kn).
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By definition of the k; in relationship to the physical processes P; in eq. (11), k; is a count of
how many times the process P; was applied. Thus, operator P, must transform the vector
|k1, ..., ki, ..., kn) into the vector |ki,...,k; + 1, ..., k). Since the probability vectors form a basis
of the probability state, we can define a linear operator P; defined by this relationship, and that
operator will generate the same predictions with respect to measurement M. Using the rea-
soning about identical processes made above, the operator P, in that case can reasonably be
assimilated to the linear operator defined by eq. (29):

Bilk1, .o kiy oo kn) =k, o ki + 1, k) (29)

Note that this is the shape of a creation operator in quantum field theories.

Combined system If we want to evaluate two distinct measurement processes M7 giving nq
different results and My giving no different results, the system will be described by two proba-
bility vectors |11) and i), and so the state of the system is described in the tensor product
R™ @ R™ on the unit sphere $™1Tn2—1,

If the two measurements are independent, then they have no effect on one another’s proba-
bility state, and therefore the corresponding operators M and M on the tensor product space
are built as tensor products of the original operator by an identity matrix. Note that eq. (3)
implies that the effect of the rest of the universe can be ignored.

However, not all physical processes are independent from M; and Ms. Using exactly the
same reasoning as in traditional quantum mechanics, such physical processes may create “entan-
gled” states in the tensor space.

4.2 Formal Analogy

The structure of the observations made in the previous section is extremely similar to the way
traditional quantum mechanics is usually written, provided we replace “wave-function”
with “probability vector”, and “observable” with “measurement operator”.

Many formulation of quantum mechanics exist. We will use the following principles|2, 3| to
illustrate the parallel with the formalism presented here:

1. The state of a physical system is defined by a ket |¢) in a Hilbert space £

2. Every measurable physical value A is described by a linear operator A on &; this operator
is an observable, i.e. a self-adjoint operator on &.

3. A measurement of A can only give as a result one of the eigenvalues of A. In particular,
the result is a real number. If A has a discrete spectrum, then the results of the measure-
ment are quantized.

4. The expected value of the observable A for a system in a state represented by |v¢) is
(P[Afh).

5. If a measurement on a system in state |¢) for observable A gives result a, then the state
of the system immediately after the measurement is the normed projection of |¢) on the
eigenspace associated to a.

6. The Hilbert space for a composite system is the tensor product of the state spaces for
the component systems.

Compare this to some conclusions of the formalism presented here:

1. What can be predicted about a measurement M is represented by a probability vector
|1)) on $"~ ! (ie. a vector of R™ verifying (¢|¢) = 1), where n is the number of distinct
symbolic or numerical measurement results my.

2. Every physical process P (including measurements) is associated to a possibly non-linear
operator P on $"~! transforming the probability vector |1). A measurement M where
the my, are real is associated to a linear operator M that has the my, as eigenvalues.

3. When the system is in state 1), the probability that the measurement will give the sym-
bolic result my, is (k|¢)?, where |k) is the vector of $”~! defined by the components &;.
|k) verifies the equations M |k) = |k) and, if the my, are real, M |k) = my|k).
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4. If the my, are real, the expected value of the measurement results for M when the system
is described by the probability vector |¢) is (1| M |1)).

5. If a measurement for a system gives result m; with certainty, then the state of the
system immediately after the measurement is described by probability vector |k).

6. The probability state associated to a composite system is the tensor product of the state
spaces for the component systems.

This parallel suggests that quantum mechanics can be interpreted as a theory of measurements.
In that interpretation, some of the axioms of quantum mechanics, like linearity, appear related
to specific experimental conditions or choices of graduation, while others are more general and
derived from what physical processes we chose to accept as measurements.

Trajectory measurement The trajectory of a particle can be defined as a set of identical
measurements Meyis; applied to a family of systems §.,.¢, where each measurement determines
whether the particle was found or not at coordinates (x, y, 2z, t) = (z;). Therefore, the measure-
ment can return two symbolic results found when the particle was found to be present in §uy .,
and not-found when the particle was not found to be present.

Since the measurements M,yist are two-valued, what can be predicted about the measure-
ment results can be represented by a vector on the unit circle $!, or, by isomorphism, by a com-
plex number of the form e, where Re(e??)? = cos? @ is, for instance, the probability that the
particle is found. Therefore, it makes sense to define ¥(x;) = ¢ ag the representation of the
probability state that the particle is found for that family of universe fragments.

Normalization of the wave-function A second condition is necessary, however. The various
¥(x;) are not independent from one another. If we perform M,yis, at multiple points of space
simultaneously in a given frame of reference, only one of them may give a result found, all the
others must give the result not-found. This means that the sum of the probability vectors cor-
responding to found over all the space where we test existence must be at most 1, and exactly 1
if the measured entity cannot escape the measurement apparatus.

We can define a function ¥ with the same phase as @ but normalized: ¥(z;) =

—__%@) __ The normalization of ¥ guarantees the standard normalization condition for the
Ve, Re(¥(@i)?

wave-function in quantum mechanics, i.e. (¥|¥) =1. Preserving the same phase as ¥ (z;) keeps
U(x;) and 9 (z;) aligned in the complex plane. Therefore, it ensures that any operator M for
which (x;) is an eigenvector also has ¥(z;) as an eigenvector, with the same eigenvalue. Conse-
quently, this also preserves the expected value of M at point ().

However, in the reasoning above, ¥ would not be normalized by summing over all of space-
time, but only over the points of space-time where the existence measurement is being carried
out. This remark eliminate the largest portion of the problems that arise when renormalizing
the wave-function in quantum mechanics, notably in relationship with the kind of non-Euclidean
changes of coordinates required by general relativity. Here, we compute the norm of the wave-
function ¥ only on the points of space time where a test is being carried out, and at the time
where it could be carried out.

For example, if we place a very large photographic plate, so that it takes one second for light
to go from the center to one of the border, the normalization condition for a photon has to be
understood as covering points in space-time that are not simultaneous, since the detection, if it
happens at the border of the plate, will happen one second later than if it happens in the center.
The “wave-function” ¥ does not collapse “instantaneously” as in quantum mechanics, it instead
collapses on a light cone centered on the “last known position” of the photon, i.e. the last uni-
verse fragment § where M,yist returned found. Seen from a point where the measurement actu-
ally finds found, the collapse therefore may contain points that are both in the future and in the
past. The points that are farther away from the last known position will collapse in the future,
while the points that are closer from the last known position have already collapsed.

Planar wave-function in “empty space” In order to validate the analogy of our function ¥
with a wave-function, we need to check that it evolves in a similar way. For simplicity, we will
only consider a simple argument regarding its evolution in a vacuum.
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If we consider an evolution along individual local-time displacements 6T of a particle, if the
0T are indistinguishable with respect to Meyist, then any two 8T should be identical. As we
noted earlier, in the general case, P is not necessarily an injective function, let alone linear.
However, in classical theories of physics, measurements are approximated by locally differen-
tiable functions of time, which implies that they are locally linear to the first order (with the
form dd—T 0t). Applying the reasoning leading to eq. (29), 8T itself can therefore be assimilated to

a linear operator on the probability space. In turn, if 8T is linear with respect to these various
measurements, it is not unreasonable to assume that it is linear with respect to Meyist as well.

If we postulate that ST is a linear operator with respect to Moyist, the most general linear
transform on $! is a rotation by angle df. Since the local laws of physics, including evolution
through local time, should not change if we change the choice of §T', an application of eq. (27)
when changing the choice of 7T implies that 60 is a linear function of ¢, i.e. 60 = w dt. There-
fore, after applying the time definition in eq. (12), we expect ¥ to take a general form ¥(z, y, z,
t) = e'“!, and the probability of presence takes the form of a planar wave from a perspective of
local time.

This is exactly what is being observed experimentally for example in Young’s slits experi-
ment. If we perform a relativistic change of coordinates, we obtain the more general form

U(zZ) = e“’;‘i), where # is the position 4-vector and k is the wave 4-vector. This “planar wave”
condition remains true for all universe fragments § connected through one another by 67 that
are indistinguishable from one another for M,y and where 67" is linear.

4.3 Interpretation
Implications of this parallel between quantum mechanics and the TIM are discussed below.

Disentanglement In quantum mechanics, combining two systems is done by considering the
tensor product of the spaces describing each individual system. At the limit, the universe would
be represented by a wave-function in an infinite tensor product combining the Hilbert space of
all possible systems (a Fock space), and the universe would contain any possible entangled state.
An ad-hoc simplification in quantum mechanics is to ignore all but the Hilbert space describing
the system, as if the rest of the universe was not there.

We justify this simplification with eq. (3). Measurements are designed to provide focus in the
physical realm, and to ignore all but a selected fragment of the universe.

Real eigenvalues In quantum mechanics, the possible results of a measurement are postulated
to be the eigenvalue of an observable, i.e. a self-adjoint operator on a Hilbert space. Quantum
measurement results are real numbers because observables only have real eigenvalues.

In the TIM, measurement results for any physical measurement are always discrete, because
we do not know how to make measurements that are truly continuous. However, if the symbolic
values for each measurement value are real numbers, one can build a linear operator M that has
the possible measurement values as real eigenvalues.

Wave-function Collapse Since quantum mechanics is linear and reversible, it is difficult to
explain why the wave-function should collapse. The need for this rule is widely considered as a
problem, and many suggestions have been made to try and explain it using a wide number of
approaches[30, 31, 32|, some even referring to concepts like “conscious observers” that are
extremely difficult to define precisely.

In the present formalism, the wave-function collapses because the measurement system is
designed to produce a repeatable numerical result. The wave-function collapse is not instanta-
neous but happens as part of the measurement process itself, and is a consequence of the non-
linearity of M. It is possible to consider incomplete measurements where the resulting measure-
ment probability |[¢) is only partially collapsed, for example to represent measurements con-
taining a dose of uncertainty, like 2.56V 4= 0.2%.

There may still be a minor reference to a conscious observer, but it happens before the
experiment. Someone performs a choice of experimental setup, a selection of valid measurement
processes among all possible physical processes. On the other hand, we do not need to hypothe-
size that something happens just because a conscious observer looks at the experiments.
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While the present theory does not need an explicit postulate to predict the collapse of the
wave-function, it ultimately does not answer the question “why are there measurements?”. In a
sense, the question has only been rewritten. In the context of the present theory, quantum deco-
herence[33] for example is a useful mathematical analysis of how measurements might appear as
a consequence of more fundamental processes.

Superposition In quantum mechanics, any linear combination of valid states is a valid state.
In particular, linear combinations of eigenvectors that are not themselves eigenvectors are
acceptable kets.

The present formalism observes that in general, a sequence in time or juxtaposition in space
of physically acceptable processes is a physically acceptable process. There are physical pro-
cesses that are not measurements and do not obey eq. (2) M M §= M § . They do not need to
turn any universe fragment into an “eigenstate” of the measurement. Consequently, it is safer to
assume that any probability state 1) in $"~! may represent a physically acceptable prediction
for M applied to some hypothetical state §.

The method used to justify the use of a wave-function as a representation of a particle prob-
ability also explains why, in Young’s slits experiment, removing a part of the system (the second
slit) would actually cause the wave-functions to add up instead of being subtracted. The reason
is that by removing part of the obstacle, we actually added a new possibility for the particle to
cross over, so we need to add the probabilities of measuring a found or not-found state.

Incomplete measurements In quantum mechanics, probabilities only exist before a measure-
ment, and are defined by how an “entangled” ket, a linear combination of eigenbasis kets, would
project on the eigenbasis. After the measurement, there are no more probabilities, both the
measurement result and corresponding ket state are known with absolute precision.

In practice, measurements are not always exact nor instantaneous[34, 35]. The result itself
may be probabilistic or contain a dose of uncertainty. The formalism presented here allows the
state after a measurement result to be itself a probability vector. There is no need for
any “instantaneous collapse” either. As the measurement progresses, the distribution of probabil-
ities becomes narrower, and the set of compatible universe states becomes smaller. At least for
some measurements, the fully collapsed wave-function and the infinitely precise measurement
need only be idealized limits.

Measurement limits Many quantum physics textbooks state confidently that the probability
of finding the particle being observed on the other side of the moon|36] is infinitesimal, but not
null. This is a logical consequence of the fact that, in the majority of cases, the mathematical
wave-function vanishes quickly with distance but never reaches zero.

In the formalism presented here, only results that can actually be generated by the measure-
ment are acceptable. If your measurement apparatus is a photographic plate measuring 10x10
centimeters, the chances that it will report that it found the photon somewhere on the moon (or
anywhere outside the plate, for that matter) is ezactly zero. The point is not that the proba-
bility for the photon to miss the plate is zero, only that we cannot talk about the probability to
detect the photon at a specific location where there is no detection instrument.

This may seem like a ridiculously small point, but it actually is the primary experimental
proof of the validity of the TIM. Quantum mechanics, as applied using the traditional for-
malism, routinely predicts precise measurement results even outside of the known limits of the
measurement apparatus. The TIM, in contrast, only predicts probabilities for the physically
possible outcomes.

Linearity The mathematics of quantum mechanics uses linear algebra on the system states, as
represented by wave-functions or kets.

The present formalism represents probability distributions as a vector in $”~!. In general,
operators on the probability states are not linear, but for a measurement M giving real measure-
ment results, the linear operator M has the properties associated to observables in quantum
mechanics.

Commutation of Observables For mathematical reasons, quantum mechanics observables
that do not commute correspond to measurements that cannot be done independently. Heisen-
berg’s inequality is the archetypal application of that observation for position and momentum
observables.
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In the present formalism, the reasoning relating eq. (7), eq. (8) and eq. (9) suggest that, as
long as a physical process is reversible, independent measurements correspond to physical pro-
cesses that commute, and conversely, measurements that do not commute impact one another
and do not give independent results. Once non-commutativity is established, the quantitative
mathematical treatment given to the probability state |i) on the tensor product space is iden-
tical to the mathematical treatment given in quantum mechanics to the ket |[¢)). The very rich
set of results obtained by studying commutation relations is therefore preserved.

Quantum space-time In the traditional approach of quantum mechanics, the space and time
operators commute with one another, because they are based on multiplying a ket with a coor-
dinate, and the multiplication of real numbers commutes. Based on the above analysis, this
defines Euclidean space-time coordinates, and this is clearly a source of conflict both with phys-
ical observation and with general relativity.

Research in the field of non-commutative geometry[37] has long been seen as one of the
promising paths towards a quantum theory of gravity. However, most applications to physics
remain firmly grounded in mathematics[38] more than in considerations of what the mathemat-
ical symbols represent. The present work shows a relatively simple physical interpretation for
this work. More importantly, it suggests that surprising aspects of it should not be too quickly
discarded as mathematically absurd.

For example, one particular issue with respect to a traditional or perturbative treatment of
space-time non-commutativity is the appearance of non-unitarity in the S-matrix[39]. Non-uni-
tarity, if interpreted as the sum of all probabilities no longer being 1, raises a serious problem
from a quantum mechanics point of view. But if we accept that non-commutativity must be
possible, then this indicates that the S-matrix lost its physical significance. This is not sur-
prising considering that a S-matrix relates the state of the system to states “at infinity”, and
those depend on the large-scale space-time structure. By analogy, if one is computing the proba-
bility to find a mobile running on the surface of earth, summing probabilities on a tangent plane
will yield incorrect results.

Hidden Variables The well known theorem of Bell gave a verifiable method for determining if
quantum mechanics can be explained by hidden variables. While the various kinds of hidden
variable theories (local, non-local, stochastic) make a definitive conclusion on this topic harder
to reach, to this day, experiments conducted by Alain Aspect [40] and others would tend to dis-
prove hidden variable theories.

The interpretation of quantum theory given here does not rely on hidden variables. The rea-
soning is based entirely on the existence of probabilities based on what we know, and this is one
meaning we gave to incomplete. But it does not imply that we can know more than what mea-
surements give us. The existence of randomness in the most precise description we can make of
the universe remains possible. Thus, even if the measurement is said to be incomplete, it may
still be the most complete description of a system we can give.

5 Conclusion and Further work

We have presented a formalism to discuss physical experiments without implicitly assuming a
specific mathematical structure. This allowed us to propose a definition of measurements, and
based on formal reasoning, to reconstruct many important aspects of both general relativity and
quantum mechanics, while suggesting a number of limitations in these theories which were not
obvious from a purely mathematical standpoint. We should now try to understand the impact
of these limitations on experiments we have made or will make.

Fundamental equations One important closing remark is that we did not present any “fun-
damental equation”, i.e. something equivalent to the field equation in general relativity or to
Schroedinger’s equation in quantum mechanics. An equation like eq. (13) is clearly not specific
enough to make predictions. As a result, the TIM principles alone are not sufficient to make
predictions, and additional relations must be written.
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For the moment, we have simply “borrowed” the existing fundamental equations from the
respective theories, with an understanding that these may be approximations corresponding to a
particular choice of physical measurement. This way, we were able to indirectly leverage the
numerous advances made during the past century, including the many forms of Lagrange equa-
tions and the gauge invariance arguments that have proven so successful in predicting particle
interactions.

In that sense, the present theory is “backwards” from most recent research: whereas recent
work is often about suggesting a new fundamental equation, generally by means of a new formu-
lation of the Lagrangian or action, the theory presented here replaces practically everything but
the fundamental equations.

Characteristics of the theory The TIM has the following characteristics:
e All measurements are treated identically, including time and space measurements.

e The theory addresses incomplete measurements, i.e. measurements from which only prob-
abilistic measurements can be made. This is true whether the uncertainty is due to a par-
tial collection of data we believe to be complete, or whether the uncertainty itself is
believed to be fundamental.

e When measurements results can as far as we know only be predicted statistically, the
theory is formally almost identical to quantum mechanics, and therefore incorporates its
predictions by reference. In particular, the theory predicts the mathematical shape of the
quantum mechanics wave-function under a reasonable set of conditions. Quantum
mechanics is seen as an approximation, where non-linearity, divergence at large scale or
non-commutativity of space and time operators are ignored. The TIM also offers yet
another interpretation of quantum mechanics.

e At large scale, the effects of space and time non-commutativity become dominant, but
measurements return quasi-deterministic results, so that measurement values can be
approximated by continuously differentiable functions. In that case, the present for-
malism becomes formally identical to general relativity, and therefore incorporates its
predictions by reference. General relativity is also seen as an approximation, where mea-
surements can be identified to their continuous approximation.

e The transition between different time and space measurements introduces an explicit res-
olution factor A, which is assimilated to the scale factor formally introduced in Nottale’s
theory of scale relativity. It is therefore expected that the present theory also incorpo-
rates scale relativity results by reference, and offers a physical justification.

Future work Obviously, simply borrowing fundamental equations and incorporating them in
the present theory is not entirely satisfying. For this reason, finding a fundamental equation,
ideally derived from TIM principles alone, should now be the most active topic of research.

In that respect, we can already make a number of preliminary observations. First, we can
note that all theories of physics accepted so far have at least one local and one distant funda-
mental law (and generally several distant laws corresponding to different interactions):

e The local law describes how the system being studied behaves. In general relativity, the
equation D u, = 0 plays that role, whereas in quantum mechanics, various formulations
coexist, starting with Schroedinger’s equation.

e The distant law describes how the rest of the universe can be “summarized” as far as the
local system is concerned. In general relativity, the field equation plays that role. In
quantum mechanics, theories are specified by their Lagrangian or, equivalently, by a
Hamiltonian or action.

Consequently, it is fair to say that none of our theories at this point can be considered as fully
unified, in the sense that none can derive large-scale laws like the shape of the Hamiltonian from
local laws like the local evolution of the wave-function.
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Attempting to resolve that issue brings the second observation, which we can make using the
gravitational interaction. Mass and energy play two complementary roles in general relativity.
Locally, mass is a resistance to change, as shown in eq. (25): the higher the mass, the lesser the
impact of external interaction. Globally, mass causes change, as shown in eq. (24): the higher
the mass, the bigger the impact in external interaction. The relation £ = h v relates these two
aspects, and therefore there seems to be a relation between the wave-particle duality and the
local-distant duality.

The “large scale” aspects, which “summarize” the rest of the universe, are by construction
containing many more degrees of freedom than the “local” aspects. It is therefore reasonable to
expect that a statistical analysis is necessary to be able to derive both local and distant formula-
tions from the same principle. Another observation gives us confidence in this approach. The
fundamental law, both for quantum mechanics and for general relativity, centers around energy.
We know since Boltzmann that there is a correlation between the number of degrees of freedom
and entropy. We also know that for a macroscopic adiabatic (closed) system, there is a direct
relation between entropy and energy (dU =T dS). It is therefore not unreasonable to speculate
that a future “fundamental equation” can be derived from a formulation of time and energy in
terms of statistical selection.
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